

HEDONIC SHOPPING MOTIVATION EFFECT ON IMPULSE BUYING BEHAVIOR THROUGH TIME AVAILABILITY AT KKV STORE MANADO TOWN SQUARE MANADO

Josep Palulungan¹

Ivonne Angelic Umboh²

^{1,2}Management Department, Universitas Katolik De La Salle Manado

Email: ¹ipalulungan@unikadelasalle.ac.id

²iumboh@unikadelasalle.ac.id

ABSTRACT

Indonesia is a country with an increasing level of nativity every year. This population requires a lot of activities and supplies of retail product every day. One popular retail store in Manado that caught a lot of attention from public is KKV Store Manado Town Square. KKV is retail store originated from China with “instagramable” ambience and youthful design with the concept of “One Stop Shopping Store”. The purpose of this research is to determine the effect of hedonic shopping motivation on impulse buying behavior with time availability as a mediating variable. Based on the result using SmartPLS 4.0, hedonic shopping motivation directly and significantly influencing impulse buying behavior, hedonic shopping motivation significantly influencing time availability, time availability significantly influencing impulse buying behavior, and hedonic shopping motivation significantly influencing impulse buying behavior through time availability of consumer in KKV Store Manado Town Square.

Keywords: *Impulse buying behavior, hedonic shopping motivation, time availability.*

INTRODUCTION

Indonesia is a country with an increasing level of nativity every year. This population requires a lot of activities and supplies of retail product every day. One popular retail store in Manado that caught a lot of attention from public is KKV Store Manado Town Square. KKV is retail store originated from China with “instagramable” ambience and youthful design with the concept of “One Stop Shopping Store”. KKV is a subsidiary of KK Group from China. KK Group has been established since 2015 and has been leading the modern-style retail business. KK Group opened its first KKV store in 2019 and has opened more than 1000 stores worldwide. This concept of KKV made the store provide a lot of products, such as skin care, toys, make-up, snacks, food, accessories, daily needs, and so many more.

The consumer shopping decision process involves several stages, including identifying needs, seeking information, evaluating alternatives, making a choice, shopping and post-shopping evaluation. The decision to shop at a particular store is of great importance to retailers as it depicts the consumer engaging in a series of specific processes when making a purchase (Utami, 2017). In the process of deciding to purchase products or services, consumers evaluate and select from various

options and ultimately make a decision. In other words, the purchase decision involves a series of selection processes between two or more alternatives that determine the product or service to be purchased (Firmansyah, 2018).

Impulse buying occurs when consumers experience a sudden urge, a strong desire to buy something immediately (Rohman et. al., 2019). According to research conducted by Nielsen (2017), impulse purchases can be defined as unplanned purchases in a retail store that are influenced by marketing strategies by providing opportunities and possibilities to touch the product directly or sensory stimulation. It can also be done by providing special offers with clear information to create a bond and help consumers remember what they need.

Time availability is a situational factor that influences different types of purchase decisions when consumers shop (Ardiyanto, 2017). Then, the hedonic pleasure factor of shopping makes someone's impulse to shop without having to plan what to spend in advance, so it triggers impulse buying behavior. Self-concept can provide an overview of individual differences that may influence purchasing decisions. And hedonic buying behavior is closely related to the fulfilment of desires (Ramadhan and Simanjuntak, 2018).

Hedonic shopping motivation, in its broadest sense, is defined as an individual's attempt to maximize pleasure while performing a particular action. Hedonic shopping motivation refers to the behavior of consumers who seek happiness and pleasure when shopping. Some previous studies have seen the influence of social media on consumer motivation to shop.

One of KKV's strategies for increasing sales is to create a store atmosphere that attracts attention and makes consumers feel comfortable while in the store. A pleasant, well-smelling store atmosphere makes consumers feel at home, which in turn encourages them to spend more time in the store, which in turn increases the likelihood of them making a purchase. The combination of environment together with the exploitation of hedonic shopping motivation of people in Manado create a supporting situation for KKV to increase consumer impulse buying.

THEORETICAL FRAMEWORK AND HYPOTHESES

Hedonic Shopping Motivation on Impulse Buying Behavior

Hedonic shopping motivation, in its broadest sense, is defined as an individual's attempt to maximize enjoyment when performing a particular action (Veenhoven, 2009). Hedonic shopping motivation is based on reducing an individual's negative experiences and increasing their positive experiences by improving them (Ryan and Deci, 2001). It is also defined as a behavioral model that positively affects an individual's basic psychological needs, such as social life satisfaction and personal competence (Huta and Waterman, 2014; Disabato, et al., 2015). The hedonic shopping motivation encourages people to engage in search activities, resulting in impulse purchases (Novia & Harmon, 2016: 124).

H₁: Hedonic shopping motivation affecting impulse buying behavior

Hedonic Shopping Motivation on Time Availability

Expenditures made by consumers are influenced by perceived Time Availability (Gehrt and Yan, 2004). The amount of time spent during shopping has been associated with Impulse Buying (Foroughi et al., 2012).

H₂: Hedonic shopping motivation affecting time availability

Time Availability Effect on Impulse Buying Behavior

One factor that has been suggested as a trigger for impulse buying is the availability of time, and research conducted by Beatty and Ferrel (1998) with the results of the study shows that the availability of time has a significant impact on impulse buying. Based on research conducted by Mowen and Minor (2012), which states that the time available to consumers to make purchases will affect how consumers organize their strategies. Other research conducted by Foroughi et al. (2012) also states that the time owned by consumers will affect purchase decisions that are not planned by these consumers.

H₃: Time availability affecting impulse buying behavior

Hedonic Shopping Motivation on Impulse Buying Behavior through Time Availability

It has been argued that individuals with more time available will experience positive emotional arousal, as opposed to those who may be frustrated due to limited time availability. This is particularly important in the context of impulse buying, as more time spent shopping has been associated with impulse buying (Foroughi et al., 2012).

H₄: Hedonic shopping motivation affecting impulse buying behavior through time availability

RESEARCH METHOD

The type of research method used in this observation is quantitative method. With the respondents of this research is consumer who's bought anything from KKV Store Manado Town Square. Data in this research is analyzed using SmartPLS 3.0 to analyze data collected using 7-scale Likert. The total number of samples in this study was determined using the Lemeshow formula due to an unknown or infinite population considering the unknown user of Skintific product of Skintific's social media viewer's number is unable to determined. The following is the calculation of the sample size based on the Lemeshow formula:

$$n = \frac{Z^2 1 - \alpha/2 P(1 - P)}{d^2}$$

Description:

n = Sample Size

Z = Z Score on confidence level 95% = 1,96

P = Maximum estimation = 0,5

d = Alpha (0,10) or sampling error = 10%

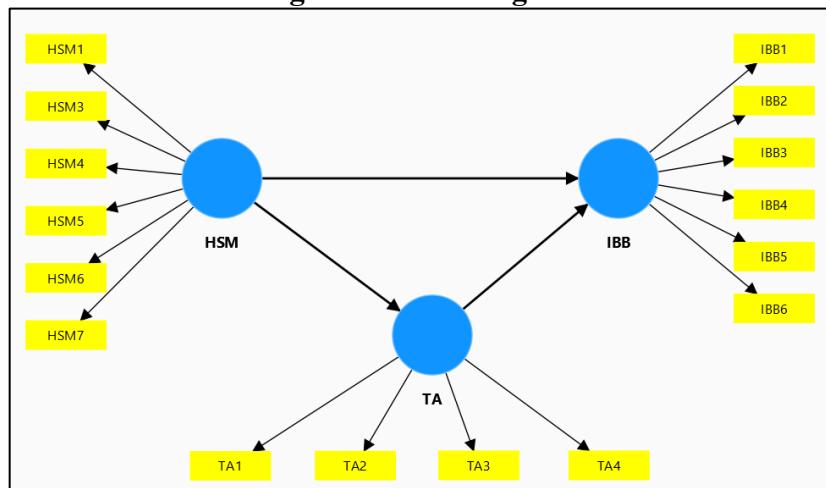
Based on the formula above, the total sample used in this research could be determined below:

$$n = \frac{1,96^2 \cdot 0,5/2 \cdot 0,5(1 - 0,5)}{0,1^2}$$

$$n = \frac{3,8416 \times 0,25}{0,01}$$

$$n = 96,04 = 96$$

Based on the calculation above, the minimum sample used in this research is 96 respondents, and researcher optimized the sample up to 100.


RESULT AND DISCUSSION

Multiple Linear Regression Analysis

Outer Model Analysis

The first step in Partial Least Square analysis is to test the outer model or measurement model. The technique used to analyze the outer model is the PLS algorithm. In this study, the outer model was tested using convergent validity test, discriminant validity test, reliability test and formative construct test. Below is a Path Diagram of this research model.

Figure 1. Path Diagram

Convergent Validity Test

There are several criteria in measuring convergent validity, which is by looking at the value of the outer loading and the average extracted variance. The first test of convergent validity is the outer loading. The indicator is declared valid if the value of outer loading of the indicator is more than 0.7 (Sarwono, 2015).

Table 1. Outer Loading Convergent Validity Test

	Outer loadings
HSM1 <- HSM	0.758
HSM3 <- HSM	0.755
HSM4 <- HSM	0.774
HSM5 <- HSM	0.766
HSM6 <- HSM	0.717
HSM7 <- HSM	0.759
IBB1 <- IBB	0.810
IBB2 <- IBB	0.752
IBB3 <- IBB	0.785
IBB4 <- IBB	0.809
IBB5 <- IBB	0.724
IBB6 <- IBB	0.817
TA1 <- TA	0.778
TA2 <- TA	0.803
TA3 <- TA	0.847
TA4 <- TA	0.781

Source: Data Processed, 2024

From Table 1 it can be seen that all indicator values are greater than 0.7. This value shows the correlation between the indicator and its construct. Indicators with outer loading value > 0.7 indicate that the indicator works in the measurement model. The next convergent validity test is to find the average variance extracted (AVE) value. AVE is the result of measuring the amount of variance that can be captured from the construct compared to the variance generated by measurement error. The AVE is obtained from the computational technique of the PLS algorithm. Variables are considered valid if they have an AVE value greater than 0.5 (Jogiyanto, 2011;). The results of the calculation of the average extracted variance (AVE) are described in the following table.

Table 2. AVE Convergent Validity Test

	Cronbach's alpha	Composite reliability (rho_a)	Composite reliability (rho_c)	Average variance extracted (AVE)
HSM	0.849	0.851	0.888	0.570
IBB	0.874	0.879	0.905	0.614
TA	0.816	0.824	0.879	0.644

Source: Data Processed, 2024

From table above, all variables with reflective indicators have an AVE value of more than 0.5. It can be said that all these variables are valid.

Discriminant Validity Test

Discriminant validity is defined as a construct that has a unique value because there are differences between it and other constructs. In assessing discriminant validity, it is necessary to examine cross-loadings, and the Fornell-Larcker criterion. The Fornell-Larcker criterion itself is defined as a measure by comparing the square root of the AVE value associated with the latent

variable. Based on this, the square root value of each AVE construct must be greater than the correlation value with other constructs.

Table 3. Fornell-Larcker Discriminant Validity Test

Discriminant validity - Fornell-Larcker criterion			
	HSM	IBB	TA
HSM	0.755		
IBB	0.608	0.784	
TA	0.625	0.793	0.803

Source: Data Processed, 2024

The Fornell-Larcker criterion table shows the AVE root value of each construct or variable. The root AVE value is then compared with the square root value. In this way, all variables are declared valid and can be used for further testing. Discriminant validity can also be known from the cross-loading score or cross validity, where the indicator value of a variable on the variable itself must be greater than the correlation of the indicator with other variables.

Table 4. Cross Loading Discriminant Validity Test

Discriminant validity - Cross loadings			
	HSM	IBB	TA
HSM1	0.758	0.405	0.461
HSM3	0.755	0.470	0.391
HSM4	0.774	0.431	0.462
HSM5	0.766	0.511	0.559
HSM6	0.717	0.435	0.497
HSM7	0.759	0.491	0.439
IBB1	0.612	0.810	0.648
IBB2	0.542	0.752	0.644
IBB3	0.348	0.785	0.652
IBB4	0.445	0.809	0.566
IBB5	0.379	0.724	0.489
IBB6	0.500	0.817	0.695
TA1	0.395	0.667	0.778
TA2	0.534	0.734	0.803
TA3	0.554	0.650	0.847
TA4	0.517	0.464	0.781

Source: Data Processed, 2024

Based on the results of the cross-loading test, it can be seen that the overall value of the external loadings of each indicator on the related construct is greater than the value of the cross-loadings on other constructs. Thus, all constructs or variables present in this study have a quality discriminant validity value.

Reliability Test

The reliability test is known as Cronbach's alpha and composite reliability scores. The Cronbach's alpha score is required to be at least 0.6, while the minimum composite reliability score is 0.7 (Jogiyanto, 2011).

Table 5
Reliability Test

	Cronbach's alpha	Composite reliability (rho_a)	Composite reliability (rho_c)	Average variance extracted (AVE)
HSM	0.849	0.851	0.888	0.570
IBB	0.874	0.879	0.905	0.614
TA	0.816	0.824	0.879	0.644

Source: Data Processed, 2024

Table 5 shows that all measures meet the required reliability criteria, both Cronbach's alpha and composite reliability. All variables have a Cronbach's alpha greater than 0.6 and a composite reliability greater than 0.7. It can be concluded that this research model is reliable and can be used for further testing.

Formative Construct Test

Formative constructs cannot be measured using AVE, Fornell-Larcker criteria, Cronbach's alpha or composite reliability. Formative constructs can be measured using a collinearity indicator with a VIF score of less than 10 (Sarwono, 2015). The VIF score is also obtained by measuring the model using the PLS algorithm. The inner VIF value <5 indicates no multicollinearity.

Table 6
Collinearity Statistics (VIF Value)

Collinearity statistics (VIF)	
	VIF
HSM -> IBB	1.640
HSM -> TA	1.000
TA -> IBB	1.640

Source: Data Processed, 2024

The test results show that a VIF value <5 means that there is no multicollinearity occurred in this model.

Hypotheses Testing

In SmartPLS, each hypothesis is tested on the sample using the bootstrap method. This is done to minimize the problem of non-normality in research data. The hypothesis is supported if the t-statistic value is greater than the t-table value at a 95% confidence level. The value of the t-table is 2.021. Based on the results of the data processing with bootstrapping, the following results are obtained:

Table 7
Path Coefficient Test Result

Path coefficients - Mean, STDEV, T values, p values						Copy to Excel
	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values	
HSM -> IBB	0.185	0.185	0.073	2.527	0.006	
HSM -> TA	0.625	0.634	0.081	7.726	0.000	
TA -> IBB	0.678	0.685	0.072	9.460	0.000	

Source: Data Processed, 2024

Table 8
Path Coefficient Test Result

Specific indirect effects - Mean, STDEV, T values, p values						Copy to Excel	Copy
	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values		
HSM -> TA -> IBB	0.424	0.434	0.073	5.812	0.000		

Source: Data Processed, 2024

Based on Table 7 and Table 8, the results for each hypothesis test which are, firstly, Hedonic Shopping Motivation directly influencing Impulse Buying Behavior, the P-Value is $0.006 < 0.05$. The t-count value is $2.527 > 2.021$. This means that the first hypothesis is accepted. For the second hypothesis, which is Hedonic Shopping Motivation influencing Time Availability, the P-Value is $0.000 < 0.05$. The t-count value is $7.726 > 2.021$. This means that the second hypothesis is accepted. For the third hypothesis, which is Time Availability influencing Impulse Buying Behavior, the P-Value is $0.000 < 0.05$. The t-count value is $9.460 > 2.021$. This means that the third hypothesis is accepted. For the fourth hypothesis, which is Hedonic Shopping Motivation influencing Impulse Buying Behavior through Time Availability, the P-value is $0.000 < 0.05$. The t-count value is $5.812 > 2.021$. This means that the fourth hypothesis is accepted.

CONCLUSION AND RECOMMENDATION

Conclusion

Based on the result of this research, there are several conclusions that could be presented:

1. Hedonic Shopping Motivation directly and significantly influencing Impulse Buying Behavior of consumer in KKV Store Manado Town Square
2. Hedonic Shopping Motivation significantly influencing Time Availability of consumer in KKV Store Manado Town Square
3. Time Availability significantly influencing Impulse Buying Behavior of consumer in KKV Store Manado Town Square

Hedonic Shopping Motivation significantly influencing Impulse Buying Behavior through Time Availability of consumer in KKV Store Manado Town Square

Recommendation

Based on the results of research and discussion, it is recommended that the management of KKV Store Manado Town Square should pay attention to hedonic shopping motivation to achieve the optimal level of impulse buying behavior. Time availability also has a significant effect on impulse buying behavior as well as the mediator of hedonic shopping motivation on impulse buying behavior. This means the management should improve the indicators of variables provided to reach the optimal level of impulse buying behavior such as, giving enough space for consumers to browse items, or providing a good quality of packaging and attractive buying experience for consumers to feel comfortable inside the KKV Store Manado Town Square.

REFERENCES

Ardiyanto, F. (2017). Pengaruh Positive Emotion, Time Availability dan Money Availability terhadap Impulse Buying Behavior Konsumen Mahasiswa pada Department Store di Kota Yogyakarta. *Akmenika Jurnal Akuntansi dan Manajemen* 14 (1): 850-862.

Beatty, S. E., & Ferrell, M. E. (1998). Impulse buying: Modeling its precursors. *Journal of Retailing* Vol. 74, No. 2.

Deci, E. L., & Ryan, R. M. (2001). On Happiness and Human Potentials: A Review of Research on Hedonic and Eudamonic Well-Being. *Annual Reviews Psychology* 52: 141-166.

Disabato et al. (2015). Different Types of Well-Being? A Cross-Cultural Examination of Hedonic and Eudamonic Well-Being. *Psychological Assessment*, 28(5), 471-482.

Firmansyah, A. (2018). Perilaku Konsumen (Sikap dan Pemasaran). Yogyakarta: CV. Budi Utama.

Foroughi, et al. (2013). Impulse Buying Behaviour and Moderating Role of Gender among Iranian Shoppers. *J. Basic Appl. Sci. Res.* 3(4), 760-769.

Gehrt, K. C., & Yan, R. (2004). Situational, Consumer, and Retailer Factors Affecting Internet, Catalog and Ste Shopping. *International Journal of Retail & Distribution Management* Vol. 32, 5-18.

Jogiyanto, H. (2011). Metodologi Penelitian Bisnis: Salah Kaprah dan Pengalaman-pengalaman. BPFE. Yogyakarta.

Mowen, J. C. and Minor, M. (2012). Consumer Behavior 5th Edition. Translated by Erlangga, Jakarta.

Nielsen (2017). Understanding Today's Omnishopper. <https://www.nielsen.com/us/en/insights/article/2017/understanding-todays-omnishopper/>.

Novia, M. & Harmon, H. (2016). Faktor Penentu Perilaku Impulsive Buying pada Fashion Business di Kota Bandung. *Jurnal Riset Bisnis dan Investasi* Vol. 2, No. 3, 121-133.

Ramadhan, A. F., & Simanjuntak, M. (2018). Perilaku Pembelian Hedonis Generasi Z: Promosi Pemasaran, Kelompok Acuan, dan Konsep Diri. *Jurnal Ilmu Keluarga dan Konsumen*, 11(3), 243-254. <https://doi.org/10.24156/jikk.2018.11.3.243>.

Rohman, D. et al. (2023). Analisis Impulse Buying Mahasiswa Pada Flash Sale dan Gratis Ongkir Shopee: Keinginan atau Kebutuhan? *Jurnal Ecogen* Vol. 6 No. 2, 156-164.

Sarwono, J. (2015). Statistik untuk Riset Skripsi. Yogyakarta: Andi Offset.

Utami, C. W. (2017). Manajemen Ritel Strategi dan Implementasi Operasional Bisnis Ritel Modern di Indonesia. Salemba Empat.

Veenhoven, R. (2009). How Do We Assess How Happy We Are? Tenets, Implications and Tenability of Three Theories. *Happiness, Economics and Politics: Towards a multi-disciplinary approach*, Chapter 3, 45-69.